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Abstract—Locality Sensitive Hashing (LSH) is proposed to 
construct indexes for high-dimensional approximate similarity 
search. Multi-Probe LSH (MPLSH) is a variation of LSH 
which can reduce the number of hash tables. Based on the idea 
of MPLSH, this paper proposes a novel probability model and 
a query-adaptive algorithm to generate the optimal multi-
probe sequence for range queries. Our probability model takes 
the query range into account to generate the probe sequence 
which is optimal for range queries. Furthermore, our 
algorithm does not use a fixed number of probe steps but a 
query-adaptive threshold to control the search quality. We do 
the experiments on an open dataset to evaluate our method. 
The experimental results show that our method can probe 
fewer points than MPLSH for getting the same recall. As a 
result, our method can get an average acceleration of 10% 
compared to MPLSH. 

Keywords- Approximate Similarity Search; Locality Sensitive 
Hash; Multi-Probe; Query Range Sensitive 

I.  INTRODUCTION  
Locality Sensitive Hashing [1][3][4][8][16] is proposed 

to construct the effective and efficient indexes for high-
dimensional approximate similarity search. LSH has been 
successfully used for image retrieval [12][13] and 3D object 
indexing [14][15]. Although LSH can get perfect results in 
theory, the limitation of LSH is that its memory consumption 
is too large. The reason is that many hash tables are needed 
to improve recall. In [1] and [8], a large number of hash 
tables are used. If the number of hash tables is large, the 
index structure cannot be loaded in main memory to get the 
best performance. Some variations [5][7][9] based on multi-
probe strategy have been brought forward to reduce the 
number of hash tables .  

The first multi-probe strategy is proposed by Entropy 
Based LSH [5].  Through randomly generating the neighbor 
points near the query point, additional hash buckets will be 
probed and all probe results are merged. As a result, more 
points will be returned and the recall will be improved.  

Multi-Probe LSH [7] is inspired by and improves upon 
Entropy Based LSH and query adaptive method [10].  A 
more efficient algorithm is proposed to generate optimal 
probe sequence of hash buckets which are likely to contain 
similar points to the query.  

Unlike Multi-Probe LSH which is based on a likelihood 
criteria, Posteriori Multi-Probe LSH [9] put forward a more 
reliable posteriori model taking account some prior about the 

query and the searched points. This prior knowledge helps to 
do a better quality control and accurately select the hash 
buckets to be probed. 

The algorithms proposed in [5][7][9] are excellent for 
searching approximate top-k nearest neighbors. However, for 
range queries, the goal of multi-probe should be to find all 
points in the query range. In this situation, the query range is 
an important prior knowledge for multi-probing. 
Unfortunately, the existing multi-probe algorithms do not 
use this prior knowledge. In this paper, a new probability 
model taking account the query range and a query-adaptive 
algorithm are proposed to generate the optimal multi-probe 
sequence for range queries. We name our method as Query 
Range Sensitive Probability Guided Multi-Probe LSH 
(QRSP-MPLSH). The contributions of this paper are shown 
as follows. 

1. Proposing a novel probability model to guide multi-
probe. The probability model proposed in this paper uses the 
query range as a parameter to compute the probability, so the 
probability can reflect the actual possibility of a bucket 
containing the points in the query range.  

2. Putting forward a query-adaptive threshold to control 
the multi-probe procedure to avoid probing too few or too 
many candidate buckets. 

II. BACKGROUND 

A. Locality Sensitive Hash (LSH) 
The principle of LSH [1] is to project similar data points 

to the same bucket with a higher probability than dissimilar 
points. In [3], a more practicable LSH scheme based on p-
stable distributions is presented for pl norm. We remind this 
scheme here, since our work is based on the same scheme. 
For the 2l metric, the typical used LSH function is defined 
as: 

                                     ��
�

��
� +⋅=

w
bvavh )(                        (1) 

where a is a d-dimensional random vector with entries 
chosen independently from a Gaussian distribution and b is a 
real number chosen uniformly from the range [ ]w,0 . w is a 
positive real number. E2LSH [4] is the more practical 
approach for 2l  norm. 
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B. Range Query Using Basic LSH 
Given a query point q and a range R, the goal of range 

query is to find all points within the distance R from q. When 
L hash tables are constructed, range query can be done as 
follows: 

1. Compute the L hash values of a given query point to 
generate L candidate hash buckets, one in each hash table. 

2. Collect all candidate points in L candidate hash 
buckets. 

3. Filter all candidate points by computing their distance 
to the query point to find the target points which are in the 
query range. 

For multi-probe method, in second step, more than L 
candidate hash buckets will be probed. 

C. Multi-Probe 
For a query point q, its hash bucket is 

))(,),(()( 1 qhqhqg k�= [1]. Define the hash perturbation 
vector to be ),,( 1 kδδ �=Δ . According to [7], we can 
believe that the bucket whose vector is little different from 
the query point’s vector may contain the neighbor points 
with a high probability. If w is reasonably large, the neighbor 
points should be hashed into the same or adjacent interval 
by )(vh . Hence, we can restrict }1,0,1{−∈jδ (j =1…k). The 
set of all candidate buckets to be probed is defined as 
follows. 

 
{ }Δ+== )(: qgvvPB qq                             (2) 

The total number of the candidate buckets is k3 . In 
practice, we cannot probe all these buckets. Only the buckets 
with a high probability of containing the neighbor points 
should be probed. 

III. OUR MULTI-PROBE METHOD 

A. Query Range Sensitive Probability Model 
In the following, we propose a probability model to 

predict how possible a candidate bucket holds the points 
within the query range R. 

For two arbitrary vectors p, q in n-dimensional feature 
space, we can compute their hash bucket 

))(),...,(),(()( 21 phphphpg k= and ))(),...,(),(()( 21 qhqhqhqg k= . jh  

is defined as formula (1). By jh , n-dimensional feature point 

is projected on ja . Then the projected value is quantized 
by w . We define the un-quantized hash value as: 

 
                             jjj bqaqf +⋅=)(                            (3) 
 
Like [7], using )1(−jx  and )1(jx  to represent the 

distances from )(qf j  to the left and the right boundaries of 
the interval, we can compute the values of )1(−jx  and )1(jx  
as follows. 

               )()()1( qhwqfx jjj ∗−=− (4)                       
)1()1( −−= jj xwx                             (5) 

From formula (3), we can get  
                      )()()( qpaqfpf jjj −⋅=−                   (6) 

ja  is a vector whose every dimension is randomly drawn 
out from Normal Distribution. Normal Distribution is a 2-
stable distribution [3]. So )()( qfpf jj − follows the normal 

distribution with parameters 2
2

2,0 qpcu −== σ , c is a 

constant. 2qp −  is the l2 distance between p and q. We 
abbreviate )1)()(Pr( −= qhph jj as )1(Pr −j , 

)1)()(Pr( += qhph jj as )1(Prj and ))()(Pr( qhph jj =  as )0(Prj . 

If we define 2qp −  as r , the probability of p, q falling into 
the same or neighbor intervals can be calculated as follows. 
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1)(-x

-

2
j

j

�
−

∞

=−                    (7) 

                         dt)crN(0,(1)Pr
(1)x

2
j

j

�
+∞

=                       (8) 

                        )1(Pr)1(Pr1)0(Pr jjj −−−=                (9) 

When q and w are given, )1(−jx and )1(jx  are constants. 

)(Pr δj (� = -1, 0 , 1) becomes the function of  r = 2qp − .  

 
Figure 1. The sensitivity of Prj(�) to the query range R. When R 

changes, Prj(-1),  Prj(1) and Prj(0) will change accordingly. 
 
r is a random variable and its distribution is unknown. 

However, our object is to find the points whose distance 
away from the query point are less than the query range R. 
Consequently, we can restrict r <=R. When r = R, 

)1(Pr −j and )1(Prj get the maximal values, and )0(Pr j get the 
minimal value. That is to say, the point whose distance away 
from the query point is R has the maximal probability of 
falling into the query point’s neighbor interval. However, the 
points within the query range have the less probability of 
falling into the query point’s neighbor interval but the higher 
probability of falling into the same interval of the query 
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point. This can be seen in Fig. 1. As a result, to 
compute )(Pr δj , we can set r=R. In this situation, )(Pr δj is 
dependent on R. For the same query point, if R is different, 

)(Pr δj is also different. For example, when R increases, 

)1(Pr −j and )1(Prj increase, but )0(Pr j decreases. The 
probability of a candidate bucket containing the points within 
the query range can be calculated as follows. 

}1,0,1{),(Pr)Pr(
1

−∈= Π
=

jjj

k

j
qv δδ              (10) 

B. Generating Multi-Probe Sequence 
To generate the optimal probe sequence, the probabilities 

of all candidate buckets must be computed and then sorted in 
decreasing order. It is unpractical to compute all these 
probabilities for every query point. The algorithm is needed 
to directly generate the sorted probe sequence without 
computing every candidate bucket’s probability.  

For a query point, ( )δjPr  ( { }1,0,1,1 −∈δktofromj ) can 
be computed according the formulas (7) to (9). For a single 
hash table, we can get k3  values. These k3  values are 
arranged in a 3xk matrix A as (11). In A, every column 
represents a decreasing order list of ( )1Pr −j , ( )0Pr j  
and ( )1Pr j . At the same time, all columns are sorted to 
decreasing order according to their first elements. That is to 
say, the first row of A includes all max elements of all 
columns and all elements in the first row are sorted in 
decreasing order. 

( ))(Pr,
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        (11) 

In (11), )(ijδ represents the value of δ corresponding to 
the ith largest probability in ( )1Pr −j , ( )0Pr j  and ( )1Pr j . For 

example,if )1(Pr)1(Pr)0(Pr jjj >−> then 0)0( =jδ , 1)1( −=jδ and

1)2( =jδ . 

   Let jz  represents the order number of the elements 
in jth  column of matrix A. Based on matrix A, every 
perturbation vector Δ can be represented by the key: 

( ) }2,1,0{,,, 21 ∈= jk zzzzZ � , kj ≤≤1        (12) 

The subscript of jz represents the column-coordinate of 

matrix A, and the value of jz represents the row-coordinate 
of matrix A. Then all elements of A can be described 
as ))((Pr jjjjz za

j
δ= . For example, when k = 5, 

given ( )0,0,2,1,0),,,,( 54321 == zzzzzZ , it corresponds to the 
vector: 

>=<
><

)(�Pr),(�Pr),(�Pr),(�Pr),(�Pr
a,a,a,a,a

14321

0504231201

)0()0()2()1()0( 54321
 

Consequently, we can get the perturbation vector Δ  : 
))0(),0(),2(),1(),0(( 54321 δδδδδ=Δ  

There is a respective value of Z for every candidate 
bucket defined in formula (2). That is to say, every candidate 
bucket can be represented by Z, and the probability of every 
candidate bucket can be computed using Z and matrix A. 
The formula (10) can be rewritten as: 

( ) jz

k

j
q j

aZv
1

Pr)Pr(
=

∏==                      (13) 

From the formula (12), we can easily conclude that 
>=< ����� �

k

Z 0,,0,00 corresponds to the maximal probability, 

and >=<− ����� �
k

kZ 2,,2,213 corresponds to the minimal 

probability.   In fact, there must be a unique order of Z that 
can sort all the probabilities in a deceasing order. The 
algorithm presented in [9] can be used to get this ordered list.  

Until now, we get an ordered list of the candidate 
buckets.  The candidate bucket at the top of the list should be 
probed firstly. However, not all the 3k buckets must be 
probed. We define an adaptive threshold to terminate the 
multi-probe procedure. 

maxPr1
N

Threshold =                       (14) 

maxPr is the maximal probability value of all the 
candidate buckets for the query point. N is a constant integer. 
This threshold is adaptive to the query point. Different query 
point will generate different threshold. As a result, different 
query point will have different number of probe steps. N can 
control the query quality. If the value of N increases, the 
value of threshold decreases. Consequently, more buckets 
can be probed. Probing more buckets can improve the recall. 
N can be selected on a training set. 

IV. EXPERIMENTAL SETUP 

A. Experimental Dataset 
Define abbreviations and acronyms the first time they are 

used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations 
in the title or heads unless they are unavoidable. 

We use an open dataset to evaluate our method. It is 
provided by TEXMEX Research Team [11]. The test dataset 
is summarized in Table 1. A query set containing 10,000 
points is provided with the test dataset.   

 
TABLE 1. TEST DATASET SUMMARIZE 

 
Name #Vectors #Dimension Size 

ANN_SIFT1M 1,000,000 128 161MB 

 

B. Evaluation Metrics 
Precision and recall are often used to evaluate the query 

quality of all kinds of index methods. However, for range 
query, the precision is always 1. Hence, we cannot use 
precision as a metric. In our experiment, we use recall as an 
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effective metric. Given a query point q, let B(q) be the set of  
all points in the query range R, let A(q) be the set of points 
returned by LSH. We define recall as follows: 

                        
)(

)()(
qB

qBqA
recall

�
=                         (15) 

However, only using recall is not enough to evaluate 
multi-probe method. Two different multi-probe methods can 
get the same recall with the same number of hash tables. 
Recall cannot effectively distinguish their performance in 
such case. Although the recall is same, the points probed by 
different methods may be quite different because different 
multi-probe methods generate different probe sequences. In 
this case, we think that one multi-probe based method is 
better than another if it can probe fewer invalid points but get 
more valid points. Based on this idea, we bring forward an 
evaluation metric, named as Valid Probe Ratio, abbreviated 
as VPR. We define VPR as follows: 

)(
)(

qP
qH

VPR =                              (16) 

where q is the query point, H(q) is the set of points in the 
query range R, P(q) is the set of all probed points. A higher 
VPR shows that more points in query range can be found 
when probe the same number of points.  

C. Implementation Details 
We use MPLSH as baseline to evaluate our method. We 

implement a MPLSH index structure modified from E2LSH. 
However, we only implement query-directed probing, 
because it is more similar to our method than step-wise 
probing. We also implement our method based on E2LSH. 
C++ programming language is used. The evaluation is done 
on a PC with one Intel dual-processor 2.4 GHz CPU and 
2GB DRAM.  

V. EEPERIMENTAL RESULTS 
We use one hash table to index the test dataset in main 

memory. Every experiment repeats 10 times. The presented 
results are all average values. Three parameters, k, w and l 
must be set for constructing LSH index structure. Besides, 
query range R need be set to realize range queries. k is used 
to control the precision of the query result[1]. However, in 
section 4.2, we conclude that precision is not a valid metric 
for range queries. As a result, the only requirement for k is 
that k must remain unchanged in all experiments. In our 
experiment, the k is equal to 5.  According to the conclusion 
in [3], w is set to 4 to optimize the performance. l is used to 
control the recall, but we can use only one hash table because 
we can get needed recall through multi-probe. In order to 
simulate the real situation, ih is randomly selected but kept 
same for QRSP-MPLSH and MPLSH in every experiment. 

A. Comparing Recall 
We do two experiments to compare the recall of two 

methods. In the first experiment, we change the query range 
and compute the average recall for both methods. For QRSP-
MPLSH, we use formula (14) to control the query quality 
and let N =10. For MPLSH, we use a fixed number of probe 

steps (4 for every query) to control the query quality. All 
other parameters are same for both methods. The 
experimental result is presented in Fig. 2. Two curves have 
similar shape, but our method can get higher recall at all 
query ranges. One reason is that our method can dynamically 
adjust the number of probe steps to avoid probing too few or 
to many candidate buckets. Another reason is that our 
probability model is sensitive to the query range and can 
generate a better probe sequence for range query than 
MPLSH. 

In the second experiment, we compute the recall when 
probing top N (N from 1 to 15) buckets. The experimental 
result is shown in Fig. 3. Our method can get a higher recall 
than MPLSH when probing top N buckets. When N = 4, our 
method can get the recall 8 percentage points higher than 
MPLSH. 

 
Figure 2. Recall vs. Query Range for QRSP-MPLSH and MPLSH. 

QRSP-MPLSH can get higher recall.  

 
Figure 3. Recall vs. Number of Probed Bucket for QRSP-MPLSH and 

MPLSH. QRSP-MPLSH can get a higher recall when probe the same 
number of buckets. 

B. Comparing Valid Probe Ratio 
Although multi-probe method can get more valid points 

(e.g. points in the query range), it must also probe more 
invalid points (e.g. points out of the query range). In this 
situation, the ability to probe the least invalid points is 
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important. To evaluate this ability, Valid Probe Ratio (VPR) 
is introduced as an evaluation metric in Section 4.2. VPR can 
evaluate the efficiency of multi-probe. We compute the VPR 
at different recall when R = 0.5, 0.7, 0.9 and 1.1. For QRSP-
MPLSH, we adjust N (in formula (14)) to get various recall. 
For MPLSH, we vary the number of probe steps to adjust 
recall. The experimental results are shown in Fig. 5. 

As shown in Fig. 5, QRSP-MPLSH can get higher VPR 
at each recall than MPLSH. QRSP-MPLSH can improve 
VPR with 20% when R=0.5, recall=0.92 in Fig. 5. On the 
one hand, our probability model is more elaborate than 
MPLSH. On the other hand, our quality control method is 
more effective than MPLSH. Using query-adaptive 
threshold, our method can avoid probing too many buckets 
for some queries. For MPLSH, it must probe the same 
number of buckets for every query. Hence, MPLSH must 
probe more invalid points than our method. Based on the 
above two reasons, our method can get a better result than 
MPLSH in the experiment.  

We can also observe that two curves in every plot are all 
degressive. This reports that multi-probe method’s 
performance will become worse when it probes too many 
buckets. 

In Fig. 5, the curve of QRSP-MPLSH covers a smaller 
range than that of MPLSH. At the left end, our initial recall 
is the same as the one of MPLSH. That is to say, the initial 
probed buckets of our method are same as MPLSH. At the 
right end, our maximal recall is smaller than that of MPLSH. 
This is because we let MPLSH probe all candidate buckets, 
and let our algorithm terminate when the probability is too 
small, i.e., our algorithm does not probe all candidate 
buckets. 

C. Query-Adaptive and Query Range Sensitive 
 

Q
ue

ry
 P

oi
nt

s N
um

Query Range (R)  
Figure 4. QRSP-MPLSH can adaptively adjust the number of probe 

steps for different query point and different R. However, MPLSH can only 
probe a fixed number of buckets. 

 
In this experiment, we set N=10 and change the query 

range from 0.4 to 0.9. As shown in Fig. 4, different query 
points probe different number of buckets when R is fixed. 
For example, when R=0.4, there are 210 query points which 
probe one bucket, and there are 400 query points which 
probe two buckets. This proves that QRSP-MPLSH can 
adaptively choose how many buckets should be probed for a 
special query point. Furthermore, there are 210 query points 
which need to probe one bucket when R=0.4, but there are 
only 100 query points when R=0.5. This shows that QRSP-
MPLSH can probe different number of buckets for some 

query points when R changes. Compared to QRSP-MPLSH, 
MPLSH does not have this kind of characteristic. 

D. Selecting Threshold 
We vary the threshold through changing N in the formula 

(14). If the value of N increases, the value of threshold 
decreases. Consequently, more buckets can be probed.  

We generate the curve of Recall vs. N on a training 
dataset provided with the test dataset [11] in Fig. 6. It can be 
observed that the curve changes greatly when N is less than 
10. The curve becomes smooth when N exceeds 10. This 
shows that the effect of the threshold becomes inconspicuous 
when the recall reaches a high value.  

We also generate the curve of VPR vs. N in Fig. 7. The 
trend of the curve is opposite to that of Fig. 6. When N is 
smaller than 10, the curve is sharp. After N exceeds 10, the 
curve becomes smooth.  

From Fig. 6 and Fig. 7, we get the conclusion that recall 
and VPR change oppositely. Based on this observation, we 
can assume that there is a value of N to balance recall and 
VPR. To get this value, we compute the product of recall and 
VPR. The curve in Fig. 8 shows the relationship between the 
product and N. There is an obvious peak value when N is 4. 
At this point, the recall is 0.8 and the VPR is 0.087. In 
practice, the recall may be more important than VPR. So, we 
can set N larger than the optimal value to get a higher recall. 
For example, we can set N = 10. 

E. Comparing Computational Time 
In Table 2, we compare the average query time of QRSP-

MPLSH and MPLSH for 10000 query points. We vary the 
recall and the query range to get 9 pairs of records. 
According to the experiment result, the average query time 
of QRSP-MPLSH is shorter than that of MPLSH. The 
speedup can reach 1.175 at most. The minimal speedup 
is1.005 when r=0.5 and recall=0.65. It is very small. The 
reason is that the multi-probe sequences generated by two 
methods are same under this special condition. Except for 
this extreme case, the average speedup can get 1.100. 

VI. RELATED WORK 
Compared to the basic LSH, multi-probe based methods 

extend the set of candidate buckets in each hash table. By 
probing neighbor buckets, the probability to find relevant 
neighbor points in a single hash table increases. 
Consequently, the number of hash tables can be reduced.  

A. Multi-Probe LSH 
Multi-Probe LSH [7] improves upon Entropy-Based 

LSH. A more efficient and accurate predict method based on 
a simple likelihood criterion is proposed. By this method, we 
can generate directly optimal probing sequence that is likely 
to contain more target points. The main contribution of 
MPLSH is as follows: 

1. Propose a score function to guide the probe. The 
definition of the score function is the following: 

	
=

=Δ
K

i
iixscore

1

2)()( δ
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2. Design two operations shift and andexp , which can 
generate the optimal probe sequence. 

Compared with QRSP-MPLSH, the score function does 
not take query range into account. As a result, for range 
queries, our method can generate a better probe sequence 
than MPLSH. The experimental results show that our 
method can get a higher recall than MPLSH at the same test 
conditions. Furthermore, the experimental results prove that 
our method can probe fewer invalid points than MPLSH to 
get the same recall, because our probability model is 
sensitive to the query range. Besides, our method uses a 
query-adaptive threshold. Hence, our method can more 
effectively probe multiple buckets than MPLSH. 

B. Posteriori Multi-Probe LSH 
Posteriori Multi-Probe LSH [9] puts forward a more 

reliable posteriori model taking account some prior about the 
query and the searched objects. This prior knowledge helps 
to do a better quality control and more accurately select the 
most probable buckets. However, the probability model used 
in [9] does not take account the query range. After getting 
the probability of the candidate buckets, the candidate 
buckets are sorted by their probability value. Generally, to 
sort the probabilities, all the probabilities must be computed 
in advance. To avoid computing all the probabilities, three 
operations are proposed to generate the sorted probe 
sequence in an incremental style. In our algorithm, we use 
the similar operations. 

VII. CONCLUSION 
In this paper, we propose a novel query range sensitive 

probability model to predict which candidate bucket may 
contain the points in the query range with high probability. 
Because our model introduces the query range as a 
parameter, our method can generate a better probe sequence 
than other methods for range queries. To sort the candidate 
buckets’ probabilities in a decreasing order, we construct a 
sorted matrix and use the similar operations as proposed in 
[9] to generate the optimal probe sequence. A query-adaptive 
threshold is used to control the probing procedure. For the 
different query point and the different query rang, there are 
different threshold values to control the probe steps. As a 
result, our method can reduce the invalid probes. For 
completely evaluating different multi-probe methods, Valid 
Probe Ratio (VPR) is used as an evaluation metric. A good 
multi-probe method should have higher VPR and recall at 
the same time. We implement QRSP-MPLSH and MPLSH, 
and do the experiments on an open dataset to compare both 
methods. The experimental results show that our method can 
generate a better probe sequence for range queries than 
MPLSH. Using the probe sequence generated by QRSP-
MPLSH, the recall is improved by 8% and the VPR is 

improved by 20% at most. Furthermore, our method can get 
an average acceleration of 10% compared to MPLSH. 
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Figure 5. VPR vs. Recall for QRSP-MPLSH and MPLSH. QRSP-MPLSH can get a higher VPR for each recall. 

 

Figure 6. Recall vs. N for QRSP-MPLSH. Figure 7. VPR vs. N for QRSP-MPLSH. Figure 8. Product of Recall and VPR vs. N for 
QRSP-MPLSH.  

 
TABLE 2. COMPARISON OF AVERAGE QUERY TIME (MEASURE:SECOND) 

 
Recall Method r=0.5 Speedup r=0.7 Speedup r=0.9 Speedup 

0.65 MPLSH 
QRSP 

0.00200 
0.00199 1.005 0.00266 

0.00245 1.086 0.00470 
0.00437 1.075 

0.75 MPLSH 
QRSP 

0.00253 
0.00238 1.063 0.00331 

0.00291 1.137 0.00540 
0.00502 1.075 

0.85 MPLSH 
QRSP 

0.00355 
0.00302 1.175 0.00401 

0.00356 1.126 0.00596 
0.00560 1.064 
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