
Query Range Sensitive Probability Guided Multi-Probe Locality Sensitive Hashing

Xiaoguang Gu1,2,3, Lei Zhang1,2,3, Dongming Zhang1,3, Yongdong Zhang1,3, Jintao Li1,3 Ning Bao4

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2Graduate University of Chinese Academy of Sciences, Beijing, China

3Beijing Key Laboratory of Mobile Computing and Pervasive Device, Beijing, China
 (Institute of Computing Technology, Chinese Academy of Sciences)

4School of Technical Physics, Xidian University, Xi’An, China
xggu@ict.ac.cn

Abstract—Locality Sensitive Hashing (LSH) is proposed to
construct indexes for high-dimensional approximate similarity
search. Multi-Probe LSH (MPLSH) is a variation of LSH
which can reduce the number of hash tables. Based on the idea
of MPLSH, this paper proposes a novel probability model and
a query-adaptive algorithm to generate the optimal multi-
probe sequence for range queries. Our probability model takes
the query range into account to generate the probe sequence
which is optimal for range queries. Furthermore, our
algorithm does not use a fixed number of probe steps but a
query-adaptive threshold to control the search quality. We do
the experiments on an open dataset to evaluate our method.
The experimental results show that our method can probe
fewer points than MPLSH for getting the same recall. As a
result, our method can get an average acceleration of 10%
compared to MPLSH.

Keywords- Approximate Similarity Search; Locality Sensitive
Hash; Multi-Probe; Query Range Sensitive

I. INTRODUCTION
Locality Sensitive Hashing [1][3][4][8][16] is proposed

to construct the effective and efficient indexes for high-
dimensional approximate similarity search. LSH has been
successfully used for image retrieval [12][13] and 3D object
indexing [14][15]. Although LSH can get perfect results in
theory, the limitation of LSH is that its memory consumption
is too large. The reason is that many hash tables are needed
to improve recall. In [1] and [8], a large number of hash
tables are used. If the number of hash tables is large, the
index structure cannot be loaded in main memory to get the
best performance. Some variations [5][7][9] based on multi-
probe strategy have been brought forward to reduce the
number of hash tables .

The first multi-probe strategy is proposed by Entropy
Based LSH [5]. Through randomly generating the neighbor
points near the query point, additional hash buckets will be
probed and all probe results are merged. As a result, more
points will be returned and the recall will be improved.

Multi-Probe LSH [7] is inspired by and improves upon
Entropy Based LSH and query adaptive method [10]. A
more efficient algorithm is proposed to generate optimal
probe sequence of hash buckets which are likely to contain
similar points to the query.

Unlike Multi-Probe LSH which is based on a likelihood
criteria, Posteriori Multi-Probe LSH [9] put forward a more
reliable posteriori model taking account some prior about the

query and the searched points. This prior knowledge helps to
do a better quality control and accurately select the hash
buckets to be probed.

The algorithms proposed in [5][7][9] are excellent for
searching approximate top-k nearest neighbors. However, for
range queries, the goal of multi-probe should be to find all
points in the query range. In this situation, the query range is
an important prior knowledge for multi-probing.
Unfortunately, the existing multi-probe algorithms do not
use this prior knowledge. In this paper, a new probability
model taking account the query range and a query-adaptive
algorithm are proposed to generate the optimal multi-probe
sequence for range queries. We name our method as Query
Range Sensitive Probability Guided Multi-Probe LSH
(QRSP-MPLSH). The contributions of this paper are shown
as follows.

1. Proposing a novel probability model to guide multi-
probe. The probability model proposed in this paper uses the
query range as a parameter to compute the probability, so the
probability can reflect the actual possibility of a bucket
containing the points in the query range.

2. Putting forward a query-adaptive threshold to control
the multi-probe procedure to avoid probing too few or too
many candidate buckets.

II. BACKGROUND

A. Locality Sensitive Hash (LSH)
The principle of LSH [1] is to project similar data points

to the same bucket with a higher probability than dissimilar
points. In [3], a more practicable LSH scheme based on p-
stable distributions is presented for pl norm. We remind this
scheme here, since our work is based on the same scheme.
For the 2l metric, the typical used LSH function is defined
as:

 ��
�

��
� +⋅=

w
bvavh)((1)

where a is a d-dimensional random vector with entries
chosen independently from a Gaussian distribution and b is a
real number chosen uniformly from the range []w,0 . w is a
positive real number. E2LSH [4] is the more practical
approach for 2l norm.

2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing

978-0-7695-4761-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SNPD.2012.35

3

B. Range Query Using Basic LSH
Given a query point q and a range R, the goal of range

query is to find all points within the distance R from q. When
L hash tables are constructed, range query can be done as
follows:

1. Compute the L hash values of a given query point to
generate L candidate hash buckets, one in each hash table.

2. Collect all candidate points in L candidate hash
buckets.

3. Filter all candidate points by computing their distance
to the query point to find the target points which are in the
query range.

For multi-probe method, in second step, more than L
candidate hash buckets will be probed.

C. Multi-Probe
For a query point q, its hash bucket is

))(,),(()(1 qhqhqg k�= [1]. Define the hash perturbation
vector to be),,(1 kδδ �=Δ . According to [7], we can
believe that the bucket whose vector is little different from
the query point’s vector may contain the neighbor points
with a high probability. If w is reasonably large, the neighbor
points should be hashed into the same or adjacent interval
by)(vh . Hence, we can restrict }1,0,1{−∈jδ (j =1…k). The
set of all candidate buckets to be probed is defined as
follows.

{ }Δ+==)(: qgvvPB qq (2)

The total number of the candidate buckets is k3 . In
practice, we cannot probe all these buckets. Only the buckets
with a high probability of containing the neighbor points
should be probed.

III. OUR MULTI-PROBE METHOD

A. Query Range Sensitive Probability Model
In the following, we propose a probability model to

predict how possible a candidate bucket holds the points
within the query range R.

For two arbitrary vectors p, q in n-dimensional feature
space, we can compute their hash bucket

))(),...,(),(()(21 phphphpg k= and))(),...,(),(()(21 qhqhqhqg k= . jh

is defined as formula (1). By jh , n-dimensional feature point

is projected on ja . Then the projected value is quantized
by w . We define the un-quantized hash value as:

 jjj bqaqf +⋅=)((3)

Like [7], using)1(−jx and)1(jx to represent the

distances from)(qf j to the left and the right boundaries of
the interval, we can compute the values of)1(−jx and)1(jx
as follows.

)()()1(qhwqfx jjj ∗−=− (4)
)1()1(−−= jj xwx (5)

From formula (3), we can get
)()()(qpaqfpf jjj −⋅=− (6)

ja is a vector whose every dimension is randomly drawn
out from Normal Distribution. Normal Distribution is a 2-
stable distribution [3]. So)()(qfpf jj − follows the normal

distribution with parameters 2
2

2,0 qpcu −== σ , c is a

constant. 2qp − is the l2 distance between p and q. We
abbreviate)1)()(Pr(−= qhph jj as)1(Pr −j ,

)1)()(Pr(+= qhph jj as)1(Prj and))()(Pr(qhph jj = as)0(Prj .

If we define 2qp − as r , the probability of p, q falling into
the same or neighbor intervals can be calculated as follows.

 dt)crN(0,1)(Pr
1)(-x

-

2
j

j

�
−

∞

=− (7)

 dt)crN(0,(1)Pr
(1)x

2
j

j

�
+∞

= (8)

)1(Pr)1(Pr1)0(Pr jjj −−−= (9)

When q and w are given,)1(−jx and)1(jx are constants.

)(Pr δj (� = -1, 0 , 1) becomes the function of r = 2qp − .

Figure 1. The sensitivity of Prj(�) to the query range R. When R

changes, Prj(-1), Prj(1) and Prj(0) will change accordingly.

r is a random variable and its distribution is unknown.

However, our object is to find the points whose distance
away from the query point are less than the query range R.
Consequently, we can restrict r <=R. When r = R,

)1(Pr −j and)1(Prj get the maximal values, and)0(Pr j get the
minimal value. That is to say, the point whose distance away
from the query point is R has the maximal probability of
falling into the query point’s neighbor interval. However, the
points within the query range have the less probability of
falling into the query point’s neighbor interval but the higher
probability of falling into the same interval of the query

4

point. This can be seen in Fig. 1. As a result, to
compute)(Pr δj , we can set r=R. In this situation,)(Pr δj is
dependent on R. For the same query point, if R is different,

)(Pr δj is also different. For example, when R increases,

)1(Pr −j and)1(Prj increase, but)0(Pr j decreases. The
probability of a candidate bucket containing the points within
the query range can be calculated as follows.

}1,0,1{),(Pr)Pr(
1

−∈= Π
=

jjj

k

j
qv δδ (10)

B. Generating Multi-Probe Sequence
To generate the optimal probe sequence, the probabilities

of all candidate buckets must be computed and then sorted in
decreasing order. It is unpractical to compute all these
probabilities for every query point. The algorithm is needed
to directly generate the sorted probe sequence without
computing every candidate bucket’s probability.

For a query point, ()δjPr ({ }1,0,1,1 −∈δktofromj) can
be computed according the formulas (7) to (9). For a single
hash table, we can get k3 values. These k3 values are
arranged in a 3xk matrix A as (11). In A, every column
represents a decreasing order list of ()1Pr −j , ()0Pr j
and ()1Pr j . At the same time, all columns are sorted to
decreasing order according to their first elements. That is to
say, the first row of A includes all max elements of all
columns and all elements in the first row are sorted in
decreasing order.

())(Pr,

222

112

002

21

11

01

ia
aa
aa
aa

a
a
a

A jjij

k

k

k

δ=
�
�
�

�

�

�
�
�

�

�
=

�
�
�

 (11)

In (11),)(ijδ represents the value of δ corresponding to
the ith largest probability in ()1Pr −j , ()0Pr j and ()1Pr j . For

example,if)1(Pr)1(Pr)0(Pr jjj >−> then 0)0(=jδ , 1)1(−=jδ and

1)2(=jδ .

 Let jz represents the order number of the elements
in jth column of matrix A. Based on matrix A, every
perturbation vector Δ can be represented by the key:

() }2,1,0{,,, 21 ∈= jk zzzzZ � , kj ≤≤1 (12)

The subscript of jz represents the column-coordinate of

matrix A, and the value of jz represents the row-coordinate
of matrix A. Then all elements of A can be described
as))((Pr jjjjz za

j
δ= . For example, when k = 5,

given ()0,0,2,1,0),,,,(54321 == zzzzzZ , it corresponds to the
vector:

>=<
><

)(�Pr),(�Pr),(�Pr),(�Pr),(�Pr
a,a,a,a,a

14321

0504231201

)0()0()2()1()0(54321

Consequently, we can get the perturbation vector Δ :
))0(),0(),2(),1(),0((54321 δδδδδ=Δ

There is a respective value of Z for every candidate
bucket defined in formula (2). That is to say, every candidate
bucket can be represented by Z, and the probability of every
candidate bucket can be computed using Z and matrix A.
The formula (10) can be rewritten as:

() jz

k

j
q j

aZv
1

Pr)Pr(
=

∏== (13)

From the formula (12), we can easily conclude that
>=< ����� �

k

Z 0,,0,00 corresponds to the maximal probability,

and >=<− ����� �
k

kZ 2,,2,213 corresponds to the minimal

probability. In fact, there must be a unique order of Z that
can sort all the probabilities in a deceasing order. The
algorithm presented in [9] can be used to get this ordered list.

Until now, we get an ordered list of the candidate
buckets. The candidate bucket at the top of the list should be
probed firstly. However, not all the 3k buckets must be
probed. We define an adaptive threshold to terminate the
multi-probe procedure.

maxPr1
N

Threshold = (14)

maxPr is the maximal probability value of all the
candidate buckets for the query point. N is a constant integer.
This threshold is adaptive to the query point. Different query
point will generate different threshold. As a result, different
query point will have different number of probe steps. N can
control the query quality. If the value of N increases, the
value of threshold decreases. Consequently, more buckets
can be probed. Probing more buckets can improve the recall.
N can be selected on a training set.

IV. EXPERIMENTAL SETUP

A. Experimental Dataset
Define abbreviations and acronyms the first time they are

used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations
in the title or heads unless they are unavoidable.

We use an open dataset to evaluate our method. It is
provided by TEXMEX Research Team [11]. The test dataset
is summarized in Table 1. A query set containing 10,000
points is provided with the test dataset.

TABLE 1. TEST DATASET SUMMARIZE

Name #Vectors #Dimension Size

ANN_SIFT1M 1,000,000 128 161MB

B. Evaluation Metrics
Precision and recall are often used to evaluate the query

quality of all kinds of index methods. However, for range
query, the precision is always 1. Hence, we cannot use
precision as a metric. In our experiment, we use recall as an

5

effective metric. Given a query point q, let B(q) be the set of
all points in the query range R, let A(q) be the set of points
returned by LSH. We define recall as follows:

)(

)()(
qB

qBqA
recall

�
= (15)

However, only using recall is not enough to evaluate
multi-probe method. Two different multi-probe methods can
get the same recall with the same number of hash tables.
Recall cannot effectively distinguish their performance in
such case. Although the recall is same, the points probed by
different methods may be quite different because different
multi-probe methods generate different probe sequences. In
this case, we think that one multi-probe based method is
better than another if it can probe fewer invalid points but get
more valid points. Based on this idea, we bring forward an
evaluation metric, named as Valid Probe Ratio, abbreviated
as VPR. We define VPR as follows:

)(
)(

qP
qH

VPR = (16)

where q is the query point, H(q) is the set of points in the
query range R, P(q) is the set of all probed points. A higher
VPR shows that more points in query range can be found
when probe the same number of points.

C. Implementation Details
We use MPLSH as baseline to evaluate our method. We

implement a MPLSH index structure modified from E2LSH.
However, we only implement query-directed probing,
because it is more similar to our method than step-wise
probing. We also implement our method based on E2LSH.
C++ programming language is used. The evaluation is done
on a PC with one Intel dual-processor 2.4 GHz CPU and
2GB DRAM.

V. EEPERIMENTAL RESULTS
We use one hash table to index the test dataset in main

memory. Every experiment repeats 10 times. The presented
results are all average values. Three parameters, k, w and l
must be set for constructing LSH index structure. Besides,
query range R need be set to realize range queries. k is used
to control the precision of the query result[1]. However, in
section 4.2, we conclude that precision is not a valid metric
for range queries. As a result, the only requirement for k is
that k must remain unchanged in all experiments. In our
experiment, the k is equal to 5. According to the conclusion
in [3], w is set to 4 to optimize the performance. l is used to
control the recall, but we can use only one hash table because
we can get needed recall through multi-probe. In order to
simulate the real situation, ih is randomly selected but kept
same for QRSP-MPLSH and MPLSH in every experiment.

A. Comparing Recall
We do two experiments to compare the recall of two

methods. In the first experiment, we change the query range
and compute the average recall for both methods. For QRSP-
MPLSH, we use formula (14) to control the query quality
and let N =10. For MPLSH, we use a fixed number of probe

steps (4 for every query) to control the query quality. All
other parameters are same for both methods. The
experimental result is presented in Fig. 2. Two curves have
similar shape, but our method can get higher recall at all
query ranges. One reason is that our method can dynamically
adjust the number of probe steps to avoid probing too few or
to many candidate buckets. Another reason is that our
probability model is sensitive to the query range and can
generate a better probe sequence for range query than
MPLSH.

In the second experiment, we compute the recall when
probing top N (N from 1 to 15) buckets. The experimental
result is shown in Fig. 3. Our method can get a higher recall
than MPLSH when probing top N buckets. When N = 4, our
method can get the recall 8 percentage points higher than
MPLSH.

Figure 2. Recall vs. Query Range for QRSP-MPLSH and MPLSH.

QRSP-MPLSH can get higher recall.

Figure 3. Recall vs. Number of Probed Bucket for QRSP-MPLSH and

MPLSH. QRSP-MPLSH can get a higher recall when probe the same
number of buckets.

B. Comparing Valid Probe Ratio
Although multi-probe method can get more valid points

(e.g. points in the query range), it must also probe more
invalid points (e.g. points out of the query range). In this
situation, the ability to probe the least invalid points is

6

important. To evaluate this ability, Valid Probe Ratio (VPR)
is introduced as an evaluation metric in Section 4.2. VPR can
evaluate the efficiency of multi-probe. We compute the VPR
at different recall when R = 0.5, 0.7, 0.9 and 1.1. For QRSP-
MPLSH, we adjust N (in formula (14)) to get various recall.
For MPLSH, we vary the number of probe steps to adjust
recall. The experimental results are shown in Fig. 5.

As shown in Fig. 5, QRSP-MPLSH can get higher VPR
at each recall than MPLSH. QRSP-MPLSH can improve
VPR with 20% when R=0.5, recall=0.92 in Fig. 5. On the
one hand, our probability model is more elaborate than
MPLSH. On the other hand, our quality control method is
more effective than MPLSH. Using query-adaptive
threshold, our method can avoid probing too many buckets
for some queries. For MPLSH, it must probe the same
number of buckets for every query. Hence, MPLSH must
probe more invalid points than our method. Based on the
above two reasons, our method can get a better result than
MPLSH in the experiment.

We can also observe that two curves in every plot are all
degressive. This reports that multi-probe method’s
performance will become worse when it probes too many
buckets.

In Fig. 5, the curve of QRSP-MPLSH covers a smaller
range than that of MPLSH. At the left end, our initial recall
is the same as the one of MPLSH. That is to say, the initial
probed buckets of our method are same as MPLSH. At the
right end, our maximal recall is smaller than that of MPLSH.
This is because we let MPLSH probe all candidate buckets,
and let our algorithm terminate when the probability is too
small, i.e., our algorithm does not probe all candidate
buckets.

C. Query-Adaptive and Query Range Sensitive

Q
ue

ry
 P

oi
nt

s N
um

Query Range (R)
Figure 4. QRSP-MPLSH can adaptively adjust the number of probe

steps for different query point and different R. However, MPLSH can only
probe a fixed number of buckets.

In this experiment, we set N=10 and change the query

range from 0.4 to 0.9. As shown in Fig. 4, different query
points probe different number of buckets when R is fixed.
For example, when R=0.4, there are 210 query points which
probe one bucket, and there are 400 query points which
probe two buckets. This proves that QRSP-MPLSH can
adaptively choose how many buckets should be probed for a
special query point. Furthermore, there are 210 query points
which need to probe one bucket when R=0.4, but there are
only 100 query points when R=0.5. This shows that QRSP-
MPLSH can probe different number of buckets for some

query points when R changes. Compared to QRSP-MPLSH,
MPLSH does not have this kind of characteristic.

D. Selecting Threshold
We vary the threshold through changing N in the formula

(14). If the value of N increases, the value of threshold
decreases. Consequently, more buckets can be probed.

We generate the curve of Recall vs. N on a training
dataset provided with the test dataset [11] in Fig. 6. It can be
observed that the curve changes greatly when N is less than
10. The curve becomes smooth when N exceeds 10. This
shows that the effect of the threshold becomes inconspicuous
when the recall reaches a high value.

We also generate the curve of VPR vs. N in Fig. 7. The
trend of the curve is opposite to that of Fig. 6. When N is
smaller than 10, the curve is sharp. After N exceeds 10, the
curve becomes smooth.

From Fig. 6 and Fig. 7, we get the conclusion that recall
and VPR change oppositely. Based on this observation, we
can assume that there is a value of N to balance recall and
VPR. To get this value, we compute the product of recall and
VPR. The curve in Fig. 8 shows the relationship between the
product and N. There is an obvious peak value when N is 4.
At this point, the recall is 0.8 and the VPR is 0.087. In
practice, the recall may be more important than VPR. So, we
can set N larger than the optimal value to get a higher recall.
For example, we can set N = 10.

E. Comparing Computational Time
In Table 2, we compare the average query time of QRSP-

MPLSH and MPLSH for 10000 query points. We vary the
recall and the query range to get 9 pairs of records.
According to the experiment result, the average query time
of QRSP-MPLSH is shorter than that of MPLSH. The
speedup can reach 1.175 at most. The minimal speedup
is1.005 when r=0.5 and recall=0.65. It is very small. The
reason is that the multi-probe sequences generated by two
methods are same under this special condition. Except for
this extreme case, the average speedup can get 1.100.

VI. RELATED WORK
Compared to the basic LSH, multi-probe based methods

extend the set of candidate buckets in each hash table. By
probing neighbor buckets, the probability to find relevant
neighbor points in a single hash table increases.
Consequently, the number of hash tables can be reduced.

A. Multi-Probe LSH
Multi-Probe LSH [7] improves upon Entropy-Based

LSH. A more efficient and accurate predict method based on
a simple likelihood criterion is proposed. By this method, we
can generate directly optimal probing sequence that is likely
to contain more target points. The main contribution of
MPLSH is as follows:

1. Propose a score function to guide the probe. The
definition of the score function is the following:

	
=

=Δ
K

i
iixscore

1

2)()(δ

7

2. Design two operations shift and andexp , which can
generate the optimal probe sequence.

Compared with QRSP-MPLSH, the score function does
not take query range into account. As a result, for range
queries, our method can generate a better probe sequence
than MPLSH. The experimental results show that our
method can get a higher recall than MPLSH at the same test
conditions. Furthermore, the experimental results prove that
our method can probe fewer invalid points than MPLSH to
get the same recall, because our probability model is
sensitive to the query range. Besides, our method uses a
query-adaptive threshold. Hence, our method can more
effectively probe multiple buckets than MPLSH.

B. Posteriori Multi-Probe LSH
Posteriori Multi-Probe LSH [9] puts forward a more

reliable posteriori model taking account some prior about the
query and the searched objects. This prior knowledge helps
to do a better quality control and more accurately select the
most probable buckets. However, the probability model used
in [9] does not take account the query range. After getting
the probability of the candidate buckets, the candidate
buckets are sorted by their probability value. Generally, to
sort the probabilities, all the probabilities must be computed
in advance. To avoid computing all the probabilities, three
operations are proposed to generate the sorted probe
sequence in an incremental style. In our algorithm, we use
the similar operations.

VII. CONCLUSION
In this paper, we propose a novel query range sensitive

probability model to predict which candidate bucket may
contain the points in the query range with high probability.
Because our model introduces the query range as a
parameter, our method can generate a better probe sequence
than other methods for range queries. To sort the candidate
buckets’ probabilities in a decreasing order, we construct a
sorted matrix and use the similar operations as proposed in
[9] to generate the optimal probe sequence. A query-adaptive
threshold is used to control the probing procedure. For the
different query point and the different query rang, there are
different threshold values to control the probe steps. As a
result, our method can reduce the invalid probes. For
completely evaluating different multi-probe methods, Valid
Probe Ratio (VPR) is used as an evaluation metric. A good
multi-probe method should have higher VPR and recall at
the same time. We implement QRSP-MPLSH and MPLSH,
and do the experiments on an open dataset to compare both
methods. The experimental results show that our method can
generate a better probe sequence for range queries than
MPLSH. Using the probe sequence generated by QRSP-
MPLSH, the recall is improved by 8% and the VPR is

improved by 20% at most. Furthermore, our method can get
an average acceleration of 10% compared to MPLSH.

ACKNOWLEDGMENT
This work is supported by the National Nature Science

Foundation of China (60802028); National High Technology
and Research Development Program of China (863 Program,
2009AA01A403); Co-building Program of Beijing
Municipal Education Commission; National key technology
support program(2012BAH39B02).

REFERENCES
[1] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high

dimensions via hashing. In Proc. of 25th Intl. Conf. on Very Large
Data Bases(VLDB), pages 518–529, 1999.

[2] J. Buhler. Efficient large-scale sequence comparison by locality-
sensitive hashing. Bioinformatics, 17:419–428, 2001.

[3] Datar, M., Immorlica, N., Indyk, P. and Mirrokni, V. Locality-
sensitive hashing scheme based on p-stable distributions. SCG
'2004.ACM Press.

[4] Andoni, A. and Indyk, P. E2lsh: Exact Euclidean locality sensitive
hashing. http://web.mit.edu/andoni/www/LSH/. 2004.

[5] R. Panigrahy. Entropy based nearest neighbor search in high
dimensions. In Proc. of annual ACM-SIAM symposium on Discrete
algorithm, pages 1186–1195, 2006.

[6] Andoni, A. and Indyk, P. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In Proceedings of
the Symposium on Foundations of Computer Science. 2006.

[7] Lv, Q., Josephson, W., Wang, Z., Charikar, M. and Li, K. Multi-
probe LSH: efficient indexing for high-dimensional similarity search.
VLDB, 2007.

[8] Andoni, A. and Indyk, P. Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions.CACM, 51, 1
(2008), 117-122.

[9] Joly, A. and Buisson, O. A posteriori multi-probe locality sensitive
hashing. In MM, 2008.

[10] H. Jegou, L. Amsaleg, C. Schmid, and P. Gros. Query-adaptative
locality sensitive hashing. In International Conference on Acoustics,
Speech, and Signal Processing. IEEE, 2008.

[11] http://corpus-texmex.irisa.fr/.
[12] Kulis, B. and Grauman, K. Kernelized locality-sensitive hashing for

scalable image search. In Proceeding of 12th International
Conference on Computer Vision. Pages 2130-2137, 2009.

[13] Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate
detection and sub-image retrieval,” in ACM Conf. on Multimedia,
2004, pp. 869–876.

[14] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor
Methods in Learning and Vision: Theory and Practice. MIT Press,
Mar 2006, ch. 3.

[15] B. Matei, Y. Shan, H. Sawhney, Y. Tan, R. Kumar, D. Huber, and M.
Hebert, “Rapid object indexing using locality sensitive hashing and
joint 3D-signature space estimation,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 28, no. 7, pp. 1111 – 1126,
July 2006.

[16] Loïc Paulevé, Hervé Jégou, Laurent Amsaleg, Locality sensitive
hashing: A comparison of hash function types and querying
mechanisms, Pattern Recognition Letters, Volume 31, Issue 11, 1
August 2010, Pages 1348-1358

8

Figure 5. VPR vs. Recall for QRSP-MPLSH and MPLSH. QRSP-MPLSH can get a higher VPR for each recall.

Figure 6. Recall vs. N for QRSP-MPLSH. Figure 7. VPR vs. N for QRSP-MPLSH. Figure 8. Product of Recall and VPR vs. N for
QRSP-MPLSH.

TABLE 2. COMPARISON OF AVERAGE QUERY TIME (MEASURE:SECOND)

Recall Method r=0.5 Speedup r=0.7 Speedup r=0.9 Speedup

0.65 MPLSH
QRSP

0.00200
0.00199 1.005 0.00266

0.00245 1.086 0.00470
0.00437 1.075

0.75 MPLSH
QRSP

0.00253
0.00238 1.063 0.00331

0.00291 1.137 0.00540
0.00502 1.075

0.85 MPLSH
QRSP

0.00355
0.00302 1.175 0.00401

0.00356 1.126 0.00596
0.00560 1.064

9

